BIFUNCTIONAL CHIRAL SYNTHONS VIA BIOCHEMICAL METHODS. VII. OPTICALLY-ACTIVE 2.2'-DIHYDROXY-1.1'-BINAPHTHYL.1

Shih-Hsiung Wu, Li-Qing Zhang. Ching-Shih Chen, Gary Girdaukas, and C. J. Sih* School of Pharmacy, University of Wisconsin, Madison, WI 53706 U.S.A.

<u>Summary</u>: Optically-active binaphthols (1R and 1S) have been prepared via microbial enantiospecific hydrolysis of axially-disymmetric (+)-2,2'-diacetoxy-1,1'-binaphthyl.

A variety of stereochemical investigations have been successfully conducted using the optically active 2.2'-dihydroxy-1.1'-binaphthyls (binaphthols). For example, the chiral binaphthols, 1R and 1S can be converted into chiral catalysts for asymmetric hydrogenation² or into chiral crown ethers³, useful as stereoselective complexing agents. Moreover, they can serve as chiral auxiliaries to form chiral hydride reagents, important in the commercial synthesis of prostaglandins⁴. Until now the racemic binaphthol has been resolved only by classical means involving the tedious separation of the diastereomeric derivatives⁵, or via chromatographic resolution upon an HPLC column packed with chiral stationary phase⁶. Herein, we report a facile method for the preparation of 1R and 1S of high optical purity via microbial enantiospecific hydrolysis of (\pm) binaphthol diacetates (2).

Two kinetic resolution steps are operating in tandem during the enzymatic hydrolysis of racemic axially-disymmetric diacetates (A and B).

 k_3 = 1; k_4 = 3.7 \pm 1.3. Based on the computer generated graphs (Fig. 1A, 1B), the maximal chemical yields obtainable for the diacetate (<u>2R</u>) and the diol (<u>1S</u>) with <u>ee</u> of 0.95 are in the range of 40% for each species. <u>R. arrhizus</u> also preferentially hydrolyzed the <u>S</u>-acetoxy groups of (\pm)2 and gave the apparent relative kinetic constants of k_1 = 10.7 \pm 1.0, k_2 = 308 \pm 35, k_3 = 1, and k_4 = 9.3 \pm 1.0.

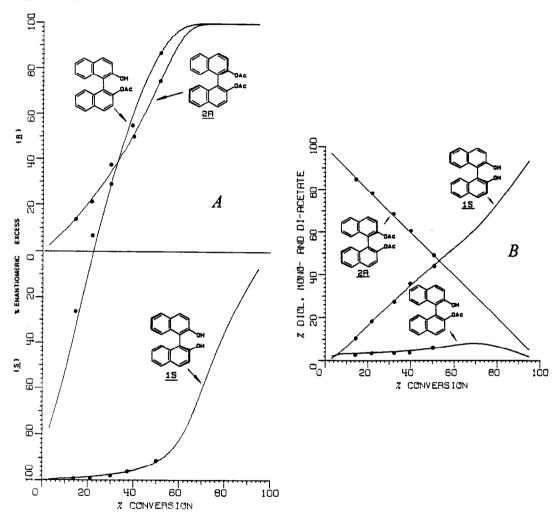


Fig. 1A. Plot of percent enantiomeric excess of diacetate, monoacetate or diol as a function of percent conversion (C = 1 - {[A + B]/[A_O + B_O]}. The curves are computer generated using the constants: $k_1 = 12.5$, $k_2 = 205$, $k_3 = 1$, and $k_4 = 3.7$. • Experimentally determined values. 1B: Percent diacetate, monoacetate or diol as a function of percent conversion.

Quantitative definition of the requisite kinetic parameters allows the prediction of the <u>ee</u> of any chiral species for a given conversion, as well as the optimization of chemical and optical yields. Further, the apparent amplification of enzymic enantiospecificity as a consequence of the synergistic interaction of the relative rate constants facilitates the preparation of axially-disymmetric compounds in their chiral forms.

Acknowledgment

The authors thank Dr. A. S. Gopalan for his technical assistance. This investigation was supported in part by grant GM 33149-05A1 of the National Institutes of Health.

References and Notes

- For part VI in this series, see: F. VanMiddlesworth, Y. F. Wang, B. N. Zhou, D. DiTullio,
 C. J. Sih, <u>Tet. Lett.</u>, 961 (1985). A preliminary account of this work was presented at the
 1st International Symposium on Bio-Organic Chemistry, New York City, May 6-8, 1985.
- 2. H. Kagan in G. Wilkinson, F. G. A. Stone and E. W. Abel: <u>Comprehensive Organometallic</u>
 <u>Chemistry</u> Vol. 8. Pergamon Press. Oxford, 1982, p. 463.
- 3. S. S. Peacock, D. M. Walba, F. C. A. Gaeta, R. C. Helgeson, and D. J. Cram, <u>J. Am. Chem.</u>
 <u>Soc.</u>, <u>102</u>, 2043 (1980).
- 4. R. Noyori, I. Tomino, Y. Tanimoto, and M. Nishizawa, J. Am. Chem. Soc., 106, 6709 (1984).
- a) J. Jacques, C. Fouqay, R. Viterbo, <u>Tet. Lett.</u>, 4617 (1971); b) E. P. Kyba, G. W. Gokel.
 F. de Jong, K. Koga, L. R. Sousa, M. G. Siegel, L. Kaplan, C. D. Y. Sogah, and D. J. Cram.
 <u>J. Org. Chem.</u>, 42, 4173 (1977).

- a) W. H. Pirkle and J. L. Schreiner, <u>J. Org. Chem.</u>, <u>46</u>, 4988 (1981); b) Y. Okamoto,
 S. Honda, I. Okamoto, H. Yuki, S. Murata, R. Noyori, and H. Takaya, <u>J. Am. Chem. Soc.</u>, <u>103</u>, 6971 (1981).
- 7. Quantitative expressions have been derived to define this kinetic system. A detailed account of derivations and calculations will appear in the full paper.
- 8. American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852-1776.
- 9. R. H. Davis and F. J. de Serres, Methods Enzymol., 17A, 84 (1971).
- 10. The extent of conversion and ee were quantitatively determined via HPLC using a 25 cm Pirkle Type 1-A column (ID 4.6 mm). The column was eluted with isopropanol-hexane (1:9) at a flow rate of 0.9 ml/min, and 1.9 ml/min after 15 min. The absorbance at 254 nm was monitored, and the retention times were: diacetate (2): 6 min; monoacetate (3R): 13.2 min. (3S): 15 min; diol (1R): 24 min, (1S): 31 min. The ee of diacetate was analyzed after conversion to diol by alkaline hydrolysis.
- 11. R. Noyori, I. Tomino, and Y. Tanimoto, <u>J. Am. Chem. Soc</u>., <u>101</u>, 3129 (1979).
- 12. Since microorganisms may contain more than one ester hydrolase, these values are apparent relative rate constants.

(Received in USA 24 May 1985)